## Graphs of Functions

Graph each function on graph paper using the given domain. Draw a separate graph for each function.

1. 
$$y = x + 2$$
, domain =  $\{-1, 0, 3\}$ 

2. 
$$y = -2x$$
, domain =  $\{-2, 1, 2, 3\}$ 

3. 
$$y = \frac{1}{2}x - 1$$
 domain =  $\{2 \le x \le 10\}$ 

4. 
$$y = x^2$$
 domain =  $\{-2 \le x \le 3\}$ 

5. 
$$y = 2x - 3$$
 domain =  $\mathbb{R}$ 

6. 
$$y = -x + 6$$
 domain =  $\mathbb{R}$ 

Solve for the y-value of the function at the given x-value.

7. 
$$f(x) = 3x - 5$$

a. 
$$f(2) =$$

b. 
$$f(5) =$$

c. 
$$f(-1) =$$

8. 
$$g(x) = -\frac{1}{2}x + 4$$

a. 
$$g(6) =$$

b. 
$$g(-6) =$$

**c.** 
$$g(0) =$$

y = kx  $y = \frac{k}{x}$ Direct Inverse

Find the constant of variation *k* and write the function rule.

- 9. y varies directly with x, and y = 20 when x = 2.5.
- 10. y varies directly with x, and y = 3 when x = 18.
- 11. y varies inversely with x, and y = 6 when x = 4.
- 12. y varies inversely with x, and y = 11 when x = 3.

Use a proportion to solve these direct variation equations.  $\frac{y_1}{x_1} = \frac{y_2}{x_2}$ 

- 13. If y is directly proportional to x, and y = 10 when x = 2, what will y equal when x = 7?
- 14. If y is directly proportional to x, and y = 6 when x = 8, what will y equal when x = 20?
- 15. If y is directly proportional to x, and y = 25 when x = 6, what will y equal when x = 18?

Use equal products to solve these inverse variation equations.  $x_1 \cdot y_1 = x_2 \cdot y_2$ 

- 16. If y is inversely proportional to x, and y = 10 when x = 2, what will y equal when x = 5?
- 17. If y is inversely proportional to x, and y = 6 when x = 3, what will y equal when x = 12?
- 18. If y is inversely proportional to x, and y = 9 when x = 8, what will y equal when x = 18?